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Author’s abstract of the PhD dissertation

Functional and transport inequalities and their applications
to concentration of measure

Michał Strzelecki

1. Introduction and motivation

My thesis is devoted to the study of functional and transportation inequalities
connected to the concentration of measure phenomenon. Before presenting its results let
us start with a short historical introduction.

The solution to the classical isoperimetric problem on the sphere Sn−1 ⊂ Rn has the
following striking consequence: functions on high-dimensional spheres with small local
oscillations are essentially constant (they are concentrated around their median (or mean
value)). The importance of this elementary, yet non-trivial, observation was emphasized
by Milman, who used it in his proof of Dvoretzky’s theorem [23]. The concentration of
measure phenomenon has become one of the main themes of high dimensional probability
and geometric analysis (see, e.g., the monographs [21, 8]).

A substantial body of research has been devoted to the interplay between various
functional inequalities, transportation of measure theory, and the concentration of measure
phenomenon, showing intimate connections between them (to mention, e.g., [26, 22,
20, 6, 24, 5, 10, 11, 13]). While initial results on concentration of measure concerned
mostly deviation bounds for Lipschitz functions of highly regular random variables, the
work by Talagrand [26, 27] has revealed that if one restricts attention to convex Lipschitz
functions, dimension-free concentration of measure holds under much weaker conditions.

Even though the theory of concentration of measure for convex functions to some extent
parallels the classical theory, there are some subtle differences related to the fact that
convexity is not preserved even under the change of signs. This creates certain difficulties
in the proofs and invalidates many well known arguments from the classical setting.
Nevertheless, several important results have been obtained, including the characterization
of dimension-free convex concentration in terms of the convex Poincaré inequality [13]
and the recent work on weak transport–entropy inequalities [15, 14].

The research presented in my thesis is strictly connected to the last two articles. It
originated from the following question.

Question 1.1. Can one give a sufficient and necessary condition for a probability
measure on the real line to satisfy the log-Sobolev inequality restricted to the the class of
convex functions?

I shall discuss the results obtained in my thesis (which include, but are not limited to,
the answer to the above question) in the next section.
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2. Results

2.1. Organization of the thesis and articles it is based on. My thesis is based
mainly on the following three articles:

1. M. Strzelecka, M. Strzelecki, T. Tkocz, On the convex infimum convolution
inequality with optimal cost function, ALEA Lat. Am. J. Probab. Math. Stat.
14 (2017), 903–915,

2. Y. Shu, M. Strzelecki, A characterization of a class of convex log-Sobolev in-
equalities on the real line, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018),
2075–2091,

3. R. Adamczak, M. Strzelecki, On the convex Poincaré inequality and weak trans-
portation inequalities, accepted in Bernoulli,

and on results obtained in spring 2018, while I was visiting the Institute of Mathematics
in Toulouse, France, and working with Franck Barthe (they are part of a project which at
the time of writing is still in progress).

The organization of the thesis is the following. In the first part, we work in the
classical setting of smooth functions and are interested in the concentration between the
exponential and Gaussian levels: Chapter 1 is a general introduction and in Chapter 2
we present a new result about Beckner-type inequalities of Latała and Oleszkiewicz.

The second, more extensive, part is concerned with concentration of measure for
convex functions. The main tool, used throughout, is the theory of weak transportation
inequalities introduced recently by Gozlan, Roberto, Samson, and Tetali [15].

We start with some preliminaries (Chapter 3), then study the convex log-Sobolev
inequality on the real line (Chapter 4), the convex Poincaré inequality in Rn (Chapter
5), general refined concentration of measure inequalities, which are consequences of weak
transportation inequalities (Chapter 6), and convex infimum convolution inequalities with
optimal cost functions for measures with log-concave tails (Chapter 7).

Below I describe the most important results contained in my thesis and some of their
consequences.

2.2. Beckner-type inequalities and modified log-Sobolev inequalities. Fix
r ∈ (1, 2) and q ∈ (2,∞) such that 1/r + 1/q = 1. In order to prove concentration
results for (the products) of measures which have heavier tails than the standard Gaussian
measure various variants of the log-Sobolev inequality have been introduced in the
literature, among others Beckner-type inequalities of Latała and Oleszkiewicz [16] and
modified log-Sobolev inequalities of Gentil, Guillin, and Miclo [10].

We say that a probability measure µ on Rd satisfies the Latała–Oleszkiewicz inequality
if there exists a constant CLO <∞ such that for every smooth f : Rd → R,

(2.1) sup
p∈(1,2)

∫
Rd f

2dµ−
(∫

Rd |f |pdµ
)2/p

(2− p)2(1−1/r)
≤ CLO

∫
Rd

|∇f |2dµ.

We say that a probability measure µ on Rd satisfies the modified log-Sobolev inequality if
there exists a constant CmLS <∞ such that for every smooth function f : Rd → (0,∞),

(2.2) Entµ(f2) ≤ CmLS
∫
Rd

Hq

( |∇f |
f

)
f2dµ,
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where Hq(t) := max{t2, |t|q} for t ∈ R (recall that q = r/(r − 1)).
Both those inequalities have the tensorization property, but the concentration prop-

erties implied by (2.2) are—up to constants—better than those implied by (2.1).1 On
the other hand, it is natural to conjecture, that—as in the result of Bobkov and Ledoux
[4] concerning the Poincaré inequality—the Latała–Oleszkiewicz inequality implies the
modified log-Sobolev inequality (and therefore improved two-level concentration).2 The
main result of Chapter 2 of my PhD thesis states that this is indeed the case:

Theorem 2.1. Let µ be a probability measure on Rd which satisfies the Latała–
Oleszkiewicz inequality (2.1) with constant CLO. Then µ satisfies the modified log-Sobolev
inequality (2.2) with a constant CmLS depending only on CLO and r.

Theorem 2.1 implies an improvement of the concentration properties which were
derived from (2.1) by Latała and Oleszkiewicz [16] and Gozlan [12]. In particular, if µ
is a probability measure on Rd which satisfies inequality (2.1) with constant CLO, then
there exists a constant K = K(CLO, r) > 0, such that for any n ∈ N and any set A ⊂ Rdn
with µ⊗n(A) ≥ 1/2,

µ⊗n
(
A+
√
tBdn

2 + t1/rBn,d
r,2

)
≥ 1− e−Kt.

Here Bdn
2 stands for the unit balls in the `2-norm on Rdn and

Bn,d
r,2 :=

{
(x1, . . . , xn) ∈ (Rd)n :

( n∑
i=1

|xi|r
)1/r ≤ 1

}
.

In Chapter 2 of my thesis I also discuss connections between modified log-Sobolev
inequalities and weighted log-Sobolev inequalities.

2.3. Characterization of the convex log-Sobolev inequality the real line.
Let µ be a Borel probability measure on R. We say that µ satisfies the convex log-Sobolev
inequality if for every smooth convex Lipschitz function f : R→ R,

(2.3) Entµ(ef ) ≤ C
∫
R
|f ′|2efdµ.

Let Uµ be the unique left-continuous and non-decreasing map transporting the
symmetric exponential measure onto the reference measure µ,

Uµ(x) = F−1µ ◦ Fτ (x) =

{
F−1µ (12e

−|x|) if x < 0,

F−1µ (1− 1
2e
−|x|) if x ≥ 0.

Here F−1µ is the generalized inverse of the cumulative distribution function Fµ.
The following strengthening of the results obtained recently in [14] is the main result

of Chapter 4 of my thesis. (A similar result holds true also for convex modified log-Sobolev
inequalities.)

1In particular, one can recover the tail behavior from the Central Limit Theorem.
2In the case when µ is a probability measure on the real line one can prove criteria for the Latała–

Oleszkiewicz inequality (2.1) and the modified log-Sobolev inequality (2.2), see [2, 3]. To the best of our
knowledge, it does not seem to be possible to find a simple argument which would allow us to deduce the
modified log-Sobolev inequality from the Latała–Oleszkiewicz inequality (for measures on the real line)
at the level of those characterizations.
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Theorem 2.2. The following conditions are equivalent.
(i) For every s > 0 we have

∫
R e

s|x|dµ(x) <∞ and there exists C > 0 such that µ
satisfies the convex log-Sobolev inequality (2.3).

(ii) There exist a, b > 0 such that for all h > 0,

sup
x∈R
{Uµ(x+ h)− Uµ(x)} ≤

√
a+ bh.

In each of the implications the constants in the conclusion depend only on the constants
in the premise.

The above theorem is stated without referring to weak transport–entropy inequalities,
but they lie at the heart of the proof and in fact Theorem 2.2 shades new light on the
relationship between the inequalities Tθ and T−θ .

As an important consequence, we obtain concentration bounds for both the upper and
lower tails of convex Lipschitz functions. Let us stress here that for the lower tail such
estimates were previously unknown since working directly with the convex log-Sobolev
inequality leads only to bounds for the upper tail, see [20].

2.4. Convex Poincaré inequality in Rn. We say that a probability measure µ on
Rn satisfies the convex Poincaré inequality with constant λ > 0 if for all convex functions
f : Rn → R we have

Var f(X) ≤ 1

λ
E |∇f(X)|2,(2.4)

where X is a random vector with law µ and by |∇f(x)| we mean the length of gradient
at x, defined as

|∇f(x)| = lim sup
y→x

|f(y)− f(x)|
|y − x|

.

The main result of Chapter 5 is a convex counterpart of the famous result of Bobkov
and Ledoux [4] which concerns the classical Poincaré inequality for smooth functions. In
the convex setting, such a result was obtained recently independently in [9] and [14], but
only for measures on the real line.

Theorem 2.3. Let µ be a probability measure on Rn which satisfies the convex
Poincaré inequality (2.4); let X be a random vector with law µ. If f : Rn → R is convex
with |∇f(x)| ≤ c <

√
2λ/(32e) for all x ∈ Rn, then

Ent(ef(X)) ≤ C(c, λ)E |∇f(X)|2ef(X),

Ent(e−f(X)) ≤ C(λ, c,M)E |∇f(X)|2e−f(X),

where M ∈ R+ is any number that satisfies P(|X − EX| ≤M) ≥ 3/4.

Remark 2.4. We suspect that the dependence on M is an artifact of our proof.

Theorem 2.3 implies in particular that µ satisfies the convex Poincaré inequality if
and only if it satisfies the weak transport-entropy inequality T with a quadratic linear
cost function.

We also present refined concentration of measure inequalities, which are consequences
of weak transportation inequalities (or, equivalently, their dual formulations: convex
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infimum convolution inequalities). This includes applications to concentration for non-
Lipschitz convex functions in the spirit of recent results due to Bobkov, Nayar, and
Tetali [7].

2.5. Convex infimum convolution inequalities with optimal cost functions.
Let X be a random vector with values in Rn and let ϕ : Rn → [0,∞] be a measurable
function. We say that the pair (X,ϕ) satisfies the convex infimum convolution inequality
if for every convex function f : Rn → R bounded from below,

(2.5) E ef�ϕ(X) E e−f(X) ≤ 1,

where f�ϕ denotes the infimum convolution of f and ϕ defined as

f�ϕ(x) = inf{f(y) + ϕ(x− y) : y ∈ Rn}, x ∈ Rn.
For a random vector X in Rn define

Λ∗X(x) := LΛX(x) := sup
y∈Rn
{〈x, y〉 − lnE e〈y,X〉}.

If X is symmetric and the pair (X,ϕ) satisfies the convex infimum convolution inequality,
then ϕ(x) ≤ Λ∗X(x) for every x ∈ Rn (see Remark 2.12 in [19]). In other words, Λ∗X is the
optimal cost function ϕ for which the convex infimum convolution inequality can hold.

In Chapter 7 we apply the results of [14] to get the following result.

Theorem 2.5. Let X be a symmetric random variable with log-concave tails, i.e.,
such that the function

t 7→ N(t) := − lnP(|X| ≥ t), t ≥ 0,

is convex. Then there exists a universal constant β ≤ 1680e such (X,Λ∗X(·/β)) satisfies
the convex infimum convolution inequality.

As a consequence, one obtains the comparison of weak and strong moments of random
vectors with independent coordinates with log-concave tails in the spirit of the results
from [25, 1, 18, 17].

3. Other publications and preprints

I am also a (co-)author of the following articles and preprints, which are not directly
connected to the subject of my PhD thesis:

4. R. Adamczak, M. Strzelecki, Modified log-Sobolev inequalities for convex functions
on the real line. Sufficient conditions, Studia Math. 230 (2015), 59–93,

5. M. Strzelecki, A note on sharp one-sided bounds for the Hilbert transform, Proc.
Amer. Math. Soc. 144 (2016), 1171–1181,

6. M. Strzelecki, The Lp-norms of the Beurling–Ahlfors transform on radial func-
tions, Ann. Acad. Sci. Fenn. Math. 42 (2017), 73–93,

7. R. Adamczak, M. Kotowski, B. Polaczyk, M. Strzelecki, A note on concentration
for polynomials in the Ising model, arXiv e-prints.

The article 4. contains some preliminary results which were superseded by [14] and the
article 2. listed above. The articles 5., 6. are concerned with martingale inequalities
and their applications to harmonic analysis. The article 7. is more directly connected
to the subject of my PhD thesis: we use some results obtained in the article 3. listed
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above to obtain concentration bounds for quadratic forms in bounded, dependent random
variables (under some assumptions which are fulfilled, e.g., in the Ising model satisfying
the Dobrushin condition).
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